منابع مشابه
The asymptotic probability that a random graph is a unit interval graph, indifference graph, or proper interval graph
متن کامل
groups for which the noncommuting graph is a split graph
the noncommuting graph $nabla (g)$ of a group $g$ is asimple graph whose vertex set is the set of noncentral elements of$g$ and the edges of which are the ones connecting twononcommuting elements. we determine here, up to isomorphism, thestructure of any finite nonabeilan group $g$ whose noncommutinggraph is a split graph, that is, a graph whose vertex set can bepartitioned into two sets such t...
متن کاملThe Dimension of a Comparability Graph
Dushnik and Miller defined the dimension of a partial order P as the minimum number of linear orders whose intersection is P. Ken Bogart asked if the dimension of a partial order is an invariant of the associated comparability graph. In this paper we answer Bogart's question in the affirmative. The proof involves a characterization of the class of comparability graphs defined by Aigner and Prin...
متن کاملInterval Graph Limits.
We work out a graph limit theory for dense interval graphs. The theory developed departs from the usual description of a graph limit as a symmetric function W (x, y) on the unit square, with x and y uniform on the interval (0, 1). Instead, we fix a W and change the underlying distribution of the coordinates x and y. We find choices such that our limits are continuous. Connections to random inte...
متن کاملTHE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G
To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory
سال: 1969
ISSN: 0021-9800
DOI: 10.1016/s0021-9800(69)80056-6